Solving the differential equations


In [2]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import odeint

Solving the two differential equations given:

$$ \ddot{\mathbf{r}} = -\gamma \left\{ \frac{M}{r^3}\mathbf{r} -\frac{S}{\rho^3}\boldsymbol{\rho} + \frac{S}{R^3}\boldsymbol\Re \right\} $$$$ \ddot{\boldsymbol\Re} = -\gamma \frac{M+S}{R^3}\boldsymbol\Re$$
  • $\gamma$ is the Gravitational constant.
  • $M$ is the central mass of the main galaxy and $S$ is the central mass of the disrupting galaxy
  • $\mathbf{r}$ is the radius vector from mass $M$ to massless point particle $m$, representing a single (massless) star in the outer disk of the main galaxy.
  • $\boldsymbol\Re$ is the radius vector from $M$ to $S$
  • $\boldsymbol{\rho} = \boldsymbol{\Re} - \boldsymbol{r}$

In [3]:
gamma = 4.4983169634398596e-06

To solve these, I first define a derivative function:


In [4]:
def derivs(solarray, t, M, S):
    """Computes the derivatives of the equations dictating the behavior of the stars orbiting galaxy M and the
    disrupting galaxy, S
    
    Parameters
    --------------
    solarray : solution array for the differential equations
    t : array of time values
    M : central mass of main galaxy
    S : central mass of disrupting galaxy
    
    Returns
    --------------
    derivarray : an array of the velocities and accelerations of galaxy S and stars, m
    
    """
    
    derivarray = np.zeros(len(solarray))
    
    R_x = solarray[0]
    R_y = solarray[1]
    R = np.sqrt(solarray[0]**2+solarray[1]**2)
    vR_x = solarray[2]
    vR_y = solarray[3]
    dR_x = vR_x
    dR_y = vR_y
    dvR_x = ((-gamma*(M+S)*R_x)/R**3)
    dvR_y = ((-gamma*(M+S)*R_y)/R**3)

    derivarray[0] = dR_x
    derivarray[1] = dR_y
    derivarray[2] = dvR_x
    derivarray[3] = dvR_y
    
    for n in range(1,int(len(solarray)/4)):
        r_x = solarray[4*n]
        r_y = solarray[4*n+1]
        r = np.sqrt(r_x**2+r_y**2)
        vr_x = solarray[4*n+2]
        vr_y = solarray[4*n+3]
        p_x = R_x - r_x
        p_y = R_y - r_y
        p = np.sqrt(p_x**2+p_y**2)
        dr_x = vr_x
        dr_y = vr_y
        dvr_x = -gamma*((M/r**3)*r_x-(S/p**3)*p_x+(S/R**3)*R_x)
        dvr_y = -gamma*((M/r**3)*r_y-(S/p**3)*p_y+(S/R**3)*R_y)

        derivarray[4*n] = dr_x
        derivarray[4*n+1] = dr_y
        derivarray[4*n+2] = dvr_x
        derivarray[4*n+3] = dvr_y
    
    return derivarray

In [5]:
a = derivs([-24,70,200,-200,-3.5,3.5,-200,-200,-3.5,-3.5,200,-200],1,1e11,1e11)

In [23]:
assert(a.shape==(12,))
assert(a.ndim==1)

Then I use odeint to solve the equations


In [6]:
def equationsolver(ic,max_time,time_step,M,S):
    """Solves the differential equations using odeint and the derivs function defined above
    
    Parameters
    -------------
    ic : initial conditions
    max_time : maximum time to be used for time array
    time_step : step size of time array
    M : central mass of main galaxy
    S : central mass of disrupting galaxy
    
    Returns
    ------------
    sol : solution array for the differential equations
    """
    t = np.linspace(0,max_time,time_step)
    sol = odeint(derivs, ic, t, args=(M,S),atol=1e-3,rtol=1e-3)
    return sol

In [7]:
b = equationsolver([-24,70,200,-200,-3.5,3.5,-200,-200,-3.5,-3.5,200,-200],1,100,1e11,1e11)

In [8]:
assert(b.shape==(100,12))
assert(b.ndim==2)

In the end, I get a solution array in the form:

$[X,Y,V_x,V_y,x_1,y_1,v_{1x},v_{1y},x_2,y_2,v_{2x},v_{2y},...,x_n,y_n,v_{nx},v_{ny}]$